|
|
Nov 23, 2024
|
|
ENGRD 2190 - Chemical Process Design and Analysis Fall. 3 credits. Letter grades only (no audit).
T.M. Duncan.
Engineering problems involving material and energy balances. Batch and continuous reactive systems in the steady and unsteady states. Introduction to phase equilibria for multicomponent systems. Examples drawn from a variety of chemical and biomolecular processes.
Outcome 1: Basic engineering calculations: convert units quickly and accurately; define, calculate and estimate properties of process materials such as fluid density, concentrations, pressure, etc. (a, k)
Outcome 2: Material and energy balance calculations: draw and label process flowsheets from verbal descriptions of processes; carry-out degree-of-freedom analyses; write and solve mass and energy balance equations for single unit and multiple unit processes with and without chemical reaction. (a, b, d, f, k)
Outcome 3: Physical chemistry: perform pressure-volume-temperature calculations for ideal and nonideal gases; perform vapor-liquid equilibrium calculations for systems containing one condensable component and for ideal multicomponent solutions; calculate internal energy and enthalpy changes for process fluids undergoing specified changes in temperature, pressure, phase, and chemical compositions; incorporate such calculations into mass and energy balance problems.(a, b, d, f, k)
Outcome 4: Other: explain the difference between transient and steady-state processes and make simple mass and energy balance calculations for transient processes; work effectively in teams and know your classmates; produce a written report on the design and analysis of a large scale process addressing a technical problem of national importance. (a, b, e, f, g, i, j, k)
Add to Favorites (opens a new window)
|
|
|